Role of SAM Chain Length in Enhancing the Sensitivity of Nanopillar Modified Electrodes for Glucose Detection
نویسندگان
چکیده
In this report, alkanethiol self assembled monolayers (SAM) with two different chain lengths were used to immobilize the functionalizing enzyme (glucose oxidase) onto gold nanopillar modified electrodes and the electrochemical processes of these functionalized electrodes in glucose detection were investigated. First, the formation of these SAMs on the nanopillar modified electrodes was characterized by the cyclic voltammetry and electrochemical impedance spectroscopy techniques, and then the detection sensitivity of these functionalized electrodes to glucose was evaluated by the amperometry technique. Results showed that the SAM of alkanethiols with a longer chain length resulted in a higher degree of surface coverage with less defect and a higher electron transfer resistance, whereas the SAM of alkanethiols with a shorter chain length gave rise to a higher detection sensitivity to glucose. This study sheds some new insight into how to enhance the sensing performance of nanopillar modified electrodes.
منابع مشابه
Role of reaction kinetics and mass transport in glucose sensing with nanopillar array electrodes
The use of nanopillar array electrodes (NAEs) for biosensor applications was explored using a combined experimental and simulation approach to characterize the role of reaction kinetics and mass transport in glucose detection with NAEs. Thin gold electrodes with arrays of vertically standing gold nanopillars were fabricated and their amperometric current responses were measured under bare and f...
متن کاملEffect of Different CNT’s Oxidation Methods on Thiocoline Detection by Surfactant Modified Graphite Electrodes
Carbon nanotubes are regarded as promising building blocks for the construction of novel biosensors due to their unique properties like fast electron transfer, high electrocatalytic effect and good biocompatibility. In the present study, the effect of different chemical oxidation’s methods of multi-walled carbon nanotubes (MWCNTs) on the electrochemical behavior of modified graphite electrodes ...
متن کاملFacile Synthesis and Electrochemical Performance of Graphene-Modified Cu2O Nanocomposite for Use in Enzyme-Free Glucose Biosensor
Graphene-modified Cu2O nanocomposite was synthesized under facile microwave irradiation of an aqueous solution and has been investigated as an enzyme-free glucose biosensor. Morphology and crystal structure of the graphene-modified Cu2O nanocomposite were investigated by using electron microscopy and X-Ray Diffraction (XRD) analyses. Also, the electrochemical performan...
متن کاملElectrocatalytic oxidation of glucose on the modified carbon paste electrode with sodalite nanozeolite for fuel cell
In this study, a sodalite nanozeolite was synthesized and characterized by X-ray diffraction (XRD) and scanning electronic microscopy (SEM). Following the morphology evolution of the sodalite nanozeolite in the SEM images illustrates the formation of the spherical particle with a size between 60 and 80 nm. Then, carbon paste electrode (CPE) was modified by sodalite nanozeolite and Ni2+ ions. Th...
متن کاملThe Inkjet Printing of Reducible AgNPs amperometric glucose biosensor Electrodes
The enzymes immobilization of the is crucially effective factor in biosensor preparation. Metal nanoparticles potentially able to immobilize the enzymes according to unique properties including large surface-to-volume ratio, high surface reaction activity, high catalytic efficiency, and strong adsorption ability. A novel and highly sensitive amperometric glucose biosensor was obtained by using ...
متن کامل